Capacitance Extraction of Graphene Field-Effect Transistors from Time-Domain Pulse Responses

Incheol Nam1,3,4, Daewon Kim1,3, Taegeun Kim1,3, Keun Heo1,3, Unjeong Kim2, Chan-Wook Baik2, Sungwoo Hwang1,2, and Sangsig Kim3

1 Research Center for Time-domain Nano-functional Devices, Samsung Advanced Institute of Technology, Yongin 446-712, Korea (swnano.hwang@samsung.com)

2 Frontier Research Laboratory, Samsung Advanced Institute of Technology, Yongin 446-712, Korea

3 Department of Electrical Engineering, Korea University, Seoul 136-701, Korea

4 DRAM Product Engineering Team, Memory Division, Samsung Electronics Co., Hwasung 445-701, Korea

We demonstrate a simple extraction method for capacitances in graphene field-effect transistors (GFETs). Intrinsic gate-oxide and parasitic capacitances from time-domain pulse responses are separately extracted by using a small-signal equivalent circuit model together with a differential equation of RC time constant. In particular, transient currents were measured in GFETs mounted on an aluminum coplanar waveguide, when rectangular pulses are applied to a gate electrode. The validity of the extraction method is proved in the case of MOSFETs under similar experimental conditions. Compared with previous calculations using a large-scale fixture for measurement, our characterization method is remarkably effective in nano-scale area without considering fixture designs\cite{1,2}.